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Abstract
Target Propagation (TP) is a biologically more plausible algo-
rithm than the error backpropagation (BP) to train deep net-
works, and improving practicality of TP is an open issue. TP
methods require the feedforward and feedback networks to
form layer-wise autoencoders for propagating the target val-
ues generated at the output layer. However, this causes certain
drawbacks; e.g., careful hyperparameter tuning is required to
synchronize the feedforward and feedback training, and fre-
quent updates of the feedback path are usually required than
that of the feedforward path. Learning of the feedforward and
feedback networks is sufficient to make TP methods capable
of training, but is having these layer-wise autoencoders a nec-
essary condition for TP to work? We answer this question by
presenting Fixed-Weight Difference Target Propagation (FW-
DTP) that keeps the feedback weights constant during train-
ing. We confirmed that this simple method, which naturally
resolves the abovementioned problems of TP, can still deliver
informative target values to hidden layers for a given task; in-
deed, FW-DTP consistently achieves higher test performance
than a baseline, the Difference Target Propagation (DTP), on
four classification datasets. We also present a novel propaga-
tion architecture that explains the exact form of the feedback
function of DTP to analyze FW-DTP.

1 Introduction
Artificial Neural Networks (NNs) were introduced to model
the information processing in the neural circuits of the brain
(McCulloch and Pitts 1943; Rosenblatt 1958). The error
backpropagation (BP) has been the most widely used algo-
rithm to optimize parameters of multi-layer NNs with gradi-
ent descent (Rumelhart, Hinton, and Williams 1986), but the
lack of consistency with neuroscientific findings has been
pointed out (Crick 1989; Glorot and Bengio 2010). In partic-
ular, the inconsistencies include that 1) in BP, the feedback
path is the reversal of the feedforward path in a way that
the same synaptic weight parameters are used (a.k.a. weight
transport problem (Grossberg 1987)), while the brain most
likely uses different sets of parameters in the feedforward
and feedback processes; 2) in BP, the layer-to-layer oper-
ations are asymmetric between feedforward and feedback
processes (i.e., the feedback process does not require the ac-
tivation used in the feedforward process), while the brain
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requires symmetric operations. Although there are on-going
research efforts to connect the brain and BP (Lillicrap et al.
2020), many researchers seek less inconsistent yet practical
algorithms of network training (Lillicrap et al. 2016; Ben-
gio 2014; Lee et al. 2015; Bengio 2020; Meulemans et al.
2020; Ahmad, van Gerven, and Ambrogioni 2020; Scellier
and Bengio 2017) because biologically plausible algorithms
that may bridge the gap between neuroscience and computer
science are believed to enhance machine learning.

Feedback alignment (FA) (Lillicrap et al. 2016) was pro-
posed to resolve the weight transport problem by using fixed
random weights for error propagation. It is worth noting that
FA has been shown to outperform BP on real datasets, al-
though the results are somewhat outdated (Nøkland 2016;
Crafton et al. 2019).

Target propagation (TP) (Bengio 2014; LeCun 1986) has
been proposed as a NN training algorithm that can circum-
vent the inconsistencies 1) and 2). The main idea of TP is
to define target values for hidden neurons in each layer in a
way that the target values (not the error) are backpropagated
from the output layer down to the first hidden layer, using
the same activation function used in the feedforward pro-
cess. The feedback network, which does not share param-
eters with the feedforward network, is trained so that each
layer becomes an approximated inverse of the correspond-
ing layer of the feedforward network, whereas the parame-
ters of the feedforward network are updated to achieve the
layer-wise target. In TP, the feedback network ideally real-
izes layer-wise autoencoders with the feedforward network,
but in reality it often ends up with imperfect autoencoders,
which could cause optimization problems (Lee et al. 2015;
Meulemans et al. 2020). Among the methods that alleviate
such small discrepancies (Lee et al. 2015; Bengio 2020),
difference target propagation (DTP) (Lee et al. 2015) intro-
duces linear correction terms to the feedback process and
significantly improved the recognition performance of TP.

However, while the formalism of DTP to compute layer-
wise targets with a feedback network is theoretically sound,
training the feedback network is often demanding in the fol-
lowing aspects: a) Synchronous training of the feedforward
and feedback networks often requires careful hyperparame-
ter tuning (Bartunov et al. 2018). b) Training of the feedback
network could be computationally very expensive. Accord-
ing to previous work (Bartunov et al. 2018; Meulemans et al.



2020; Ernoult et al. 2022), weight updates of the feedback
networks were more frequent than those of the feedforward
networks. In the latest research (Ernoult et al. 2022), the
number of updating feedback weights is set to several tens
of times of that of the feedforward weights. For these rea-
sons, training a feedback network typically requires a large
cost including hyperparameter tuning.

It is clear that having a relation of layer-wise autoencoders
by the feedforward and feedback network is sufficient for
the target propagation algorithms to gain training capability.
In this work, we aim to answer the question whether con-
structing layer-wise autoencoders is also a necessary con-
dition for target propagation to work. To answer this ques-
tion, we examined a very simple approach, where the pa-
rameters of the feedback network are kept fixed while the
feedforward network is trained just as DTP. No reconstruc-
tion loss is imposed, so the feedforward and feedback net-
works are not forced to form autoencoders. Nevertheless,
our new target propagation method, fixed-weight difference
target propagation (FW-DTP), greatly improves the stabil-
ity of training and test performance compared to DTP while
reducing computational complexity from DTP. The idea of
fixing feedback weights is inspired by FA, which fixes feed-
back weights during BP to avoid the weight transport prob-
lem. But the difference is that FW-DTP greatly simplifies the
learning rule of DTP by removing layer-wise autoencoding
losses, whereas FA has no such effect. We provide math-
ematical expressions about conditions that network trained
with DTP will implicitly acquire with and without fixing
feedback weights. We further propose a novel propagation
architecture which can explicitly provide the exact form
of the feedback function of DTP, which implies that FW-
DTP acquires implicit autoencoders. It is worth mention-
ing that Local Representation Alignment (LRA) (Ororbia
et al. 2018) (followed by (Ororbia and Mali 2019; Ororbia
et al. 2020)) also proposed biologically-plausible layer-wise
learning rules with fixed parameters, though it does not be-
long to the target propagation family.

Our contribution is three-fold: 1) We propose fixed-weight
difference target propagation (FW-DTP) that fixes feedback
weights and drops the layer-wise autoencoding losses from
DTP. Good learnability of FW-DTP indicates that optimiz-
ing the objectives of layer-wise target reconstruction is not
necessary for the concept of target propagation to prop-
erly work. 2) We present a novel architecture that explicitly
shows the exact form of feedback function of DTP, which
allows for an accurate notation of how the targets are back-
propagated in the feedback network. 3) We experimentally
show that FW-DTP not only improves the stability of train-
ing from DTP, but also improves the mean test accuracies
from DTP on four image classification datasets just like FA
outperforming BP by using fixed backward weights.

2 Overview: Target Propagation Methods
We overview target propagation methods including TP
(Bengio 2014) and DTP (Lee et al. 2015).
Definition 2.1 (Feedforward and feedback functions). Let
X and Y be the input and output spaces, respectively. A

feedforward function F : X → Y is defined as a composite
function of layered encoders fl (l = 1, · · ·L) by

F (x) = fL ◦ fL−1 ◦ · · · ◦ f1(x) (1)

whereL is the number of encoding layers, x ∈ X is an input.
A feedback function G : Y → X is defined by

G(y) = g1 ◦ g2 ◦ · · · ◦ gL(y) (2)

where y ∈ Y is an output and gl is the l-th decoder. Each gl
is paired with fl, and will be trained to approximately invert
fl. The feedforward activation hl is recursively defined as

hl =

{
x (l = 0)

fl(hl−1) (l = 1, · · · , L) (3)

and the target τl is recursively defined in the descending or-
der as

τl =

{
y⋆ (l = L)

g̃l+1(τl+1) (l = L− 1, · · · , 0) (4)

where y⋆ is the output target. In Eq. (4), g̃l is an extended
function of gl to propagate targets, and it could be the same
as gl. Note that this paper focuses on supervised learning
where loss L(F (x), y) to be minimized takes finite values
over all training pairs (x, y) ∈ X × Y .
Target Propagation (TP). TP is an algorithm to learn the
feedforward and feedback function where fl and gl are pa-
rameterized. It defines the output target based on gradient
descent (GD) (Bengio 2014) as

y⋆(hL) = hL − β
∂L(hL, y)
∂hL

(5)

where β is a nudging parameter. For propagating targets,
g̃l = gl is used. TP updates feedforward weights (the pa-
rameters of fl) and feedback weights (the parameters of gl)
alternately. The l-th layer’s feedforward weight is updated
to reduce layer-wise local loss:

Ll =
1

2β
∥hl − τl∥22 (6)

where τl is considered as a constant with respect to the l-
th layer’s feedforward weight, i.e., the gradient of τl with
respect to the weight is 0. The l-th layer’s feedback weight
is updated to reduce reconstruction loss:

L′
l =

1

2
Eϵ∼N (0,σ2I)

[
∥hl−1 + ϵ− gl ◦ fl(hl−1 + ϵ)∥22

]
(7)

where ϵ is a small noise to improve the robustness of in-
version. A known limitation of TP is that imperfectness
of the feedback function as inverse leads to a critical opti-
mization problem (Lee et al. 2015; Meulemans et al. 2020),
i.e., the update direction τl − hl involves reconstruction er-
rors gl+1(fl+1(hl)) − hl; thus, the feedforward network is
not trained properly with an imprecisely optimized feedback
network.



Difference Target Propagation (DTP). Lee et al. (Lee et al.
2015) show that difference correction, subtracting the differ-
ence gl+1(hl+1) − hl from the target, alleviates the limita-
tion of TP, and they introduce DTP, whose function g̃l+1 for
propagating targets in Eq. (4) is defined by

g̃l+1(τl+1) = gl+1(τl+1) + hl − gl+1(hl+1). (8)

The losses for updating feedforward and feedback weights
are the same as those of TP. In DTP, assuming all encoders
are invertible, the first order approximation of ∆hl := τl−hl
is given by

∆hl ≃

[
L∏

k=l+1

∂gk(hk)

∂hk

]
∆hL (9)

=

[
L∏

k=l+1

Jgk

](
−β ∂L(hL, y)

∂hL

)
(10)

= −βJ−1
fl+1:L

∂L(hL, y)
∂hL

(11)

where Jgk := ∂gk(hk)/∂hk is the Jacobian matrix of gk
evaluated at hk. Here, Jgl = J−1

fl
(l = 1, · · · , L) and

J−1
fl+1:L

=
∏L

k=l+1 J
−1
fk

are used due to the invertibility,
where Jfl := ∂fk(hk−1)/∂hk−1 is the Jacobian matrix of
fk evaluated at hk−1. The notation ()a:b is for composing
functions from layers a to b, e.g., fl+1:L = fL ◦ · · · ◦ fl+1.
The update rule of DTP is regarded as a hybrid of GD and
Gauss-Newton (GN) algorithm (Gauss 1809). Note that, in
the case of the non-invertible encoders, DTP obtains the con-
dition Jgl = J+

fl
where J+

fl
is the Moore-Penrose inverse

(Moore 1920; Penrose 1955) of Jfl , however, J+
fl+1:L

=∏L
k=l+1 J

+
fk

is not always satisfied (Meulemans et al. 2020;
Campbell and Meyer 2009).

3 Proposed Method
This section presents the proposed fixed-weight difference
target propagation (FW-DTP) that drops the training of feed-
back weights. We first propose FW-DTP according to the
traditional notation (defined in Section 2) in 3.1. We then an-
alyze FW-DTP from two points of view: the conditions for
Jacobians in 3.2 and the exact form of the feedback function
in 3.3. From these analyses, we explain why fixed-weights
of FW-DTP has a good learnability.

3.1 Fixed-Weight Difference Target Propagation
FW-DTP is defined as the algorithm that omits reconstruc-
tion loss for updating feedback weights in DTP. All feedback
weights are first randomly initialized and then fixed during
training. For example, with a fully connected network, the
l-th encoder and decoder of FW-DTP are defined by

fl(hl−1) := σl(Wlhl−1), gl(τl) := σ′
l(Blτl) (12)

where σ and σ′ are non-linear activation functions and Wl

and Bl are matrices which denote the feedforward and feed-
back weights, respectively. Bl is first initialized with a dis-
tribution P (Bl) and then fixed, while Wl is updated in

the learning process. The feedback propagation of targets
are defined by Eq. (8). Note that DTP asymptotically ap-
proaches FW-DTP by decreasing the learning rate of the
feedback weights.

3.2 Analysis 1: Condition for Jacobians
Here, we discuss conditions for DTP to appropriately work.
Given that precise inverse relation between fl and gl may
not be always obtainable in DTP, training with inaccurate
targets can degrade the overall performance of the feedfor-
ward function. Now, consider two directions τl − hl and
fl(h

∗
l−1)−hl, a vector from the activation hl to the target τl

at layer l, and another from hl to the point fl(h∗l−1). If the
condition
−π
2
≤ ∠(τl − hl, fl(h

∗
l−1)− hl) ≤

π

2
where h∗l−1 = τl−1

(13)
holds, i.e., if the angle between them is within 90 degrees,
the loss of this sample is expected to decrease because
fl(h

∗
l−1) is the best point achieved by learning (l − 1)-th

encoder. By applying the first order approximation, Eq. (13)
is rewritten as

∆h⊤l JflJgl∆hl ≥ 0 (14)
therefore, the sufficient condition of Eq. (13) is that JflJgl
is a positive semi-definite matrix. As Table 1 shows, min-
imization of reconstruction losses of DTP such as original
DTP (Eq. (7)), difference reconstruction loss (DRL) (Meule-
mans et al. 2020) and local difference reconstruction loss
(L-DRL) (Ernoult et al. 2022) naturally satisfy the positive
semi-definiteness by enforcing the Jacobian matrix Jgl as
the inverse or transpose of Jfl . On the other hand, positive
semi-definiteness requires

inf
ϵ

[
ϵ⊤JflJglϵ

]
≥ 0 (15)

however, this condition could be somewhat too strict, given
that features may not always span the full space. In FW-DTP,
the strict condition expressed in Eq. (15) is not generally sat-
isfied because FW-DTP has no feedback objective function
to learn to explicitly satisfy this condition. Now, let us con-
sider a hypothetical situation where the product of Jacobians
satisfies the condition,

Eϵ∼p(·)
[
ϵ⊤JflJglϵ

]
≥ 0 (16)

where the infimum in Eq. (15) is replaced with the expec-
tation over some origin-centric rotationally-symmetric dis-
tribution p(·) such as a zero-mean isotropic Gaussian distri-
bution. Then, it is straightforward to show that Eq. (16) is
equivalent to

tr(JflJgl) ≥ 0. (17)
The condition expressed in Eq. (17) is weaker than Eq. (15).
Under the condition of Eq. (17), if (l−1)-th activation moves
toward the target, it will shifts l-th activation toward the cor-
responding target within π/2 range as the expectation (over
p). Although the condition of Eq. (17) is somewhat artifi-
cial, but indeed we found that FW-DTP does satisfy this
condition in our experiment as we show in Section 4. The
condition expressed in Eq. (17) could be regarded as a type
of alignments that the network implicitly acquires when its
feedback weights are fixed during DTP updates.



Table 1: The conditions of the Jacobians obtained by various reconstruction losses and FW-DTP.

METHOD DTP DRL L-DRL FW-DTP

CONDITION Jgl = J+
fl

∏L
k=l Jgk = J+

fl:L
Jgl = J⊤

fl
tr(JflJgl) > 0

3.3 Analysis 2: Exact Form of Feedback Function
To show how targets are propagated in FW-DTP, we present
a propagation architecture which provides the exact form of
the feedback function of DTP. There exists no autoencoders
in FW-DTP at least explicitly; however, difference correc-
tion creates autoencoders implicitly. To explicitly show this,
instead of using the function g̃l for propagating targets in
Eq (4), we decomposed encoder and decoder as fl = fνl ◦f

µ
l

and gl = gνl ◦ gµl to incorporate the difference correction
mechanism into gνl . Using the proposed architecture repre-
sented by Eqs. (18-20), TP and DTP are reformulated as
Eqs. (22-30) and the training process is also reformulated
as Eq. (21).
Definition 3.1 (Propagation Architecture). We define a
feedforward function F : X → Y with encoders fl and a
feedback function G : Y → X with decoders gl by Eqs. (1-
2). The targets are recursively defined in the descending or-
der as

τl =

{
y⋆ (l = L)

gl+1(τl+1) (l = L− 1, · · · , 0) (18)

where y⋆ is the output target. Eq (18) differs from Eq (4) in
that we avoid to define g̃l. Further, we introduce four func-
tions fµl , f

ν
l , g

µ
l , g

ν
l that decompose the encoder and decoder

into

fl = fνl ◦ fµl , gl = gνl ◦ gµl . (19)

We also define a shortcut function ψl that map the activation
to the target as

ψl(hl) =

{
τL (l = L)

gL:l+1 ◦ ψL ◦ fl+1:L(hl) (l = L− 1, · · · , 0).
(20)

Here, ψl(hl) = τl. Figure 1a illustrates the proposed prop-
agation architecture. With this architecture, we expect that
gl ◦ fl will become an autoencoder after convergence with
the activations sufficiently close to the corresponding targets
. It is reduced to DTP when fµl is the identity function, fνl
is a parameterized function (e.g., fνl (hl−1) = σ(Wlhl−1)),
gµl is another parameterized function, and gνl is a function
of difference correction, as shown in Figure 1b and 1c. Note
that Figure 1c is a well-known visualization of DTP (Lee
et al. 2015). The main problem we would like to discuss
is whether there exists the exact form of gνl . With the tra-
ditional notations in Eq. (8), g̃l+1 is defined as a function
of τl+1, however, it uses hl and hl+1 in the right side of
the equation. This makes it difficult to analyze the shape of
feedback function; thus, we define the training process here
as follows.

Definition 3.3 (Training). Let ql = (fµl , f
ν
l , g

µ
l , g

ν
l ) a

quadruplet of functions. We define training as the process
to solve the following layer-wise problem:

q∗l = argmin
ql∈Ql

Ol (21)

where Ql = Fµ
l ×Fν

l ×Gµ
l ×Gν

l is a function space (search
space), and Ol is the objective function.

This definition involves TP and DTP variants as follows.
Target Propagation. Using the proposed architecture, TP is
defined as a training process with the search spaces:

Fµ
l = {id}, Fν

l = {pθ : θ ∈ Θl} (22)

Gµ
l = {pω : ω ∈ Ωl}, Gν

l = {id} (23)

where id is the identity function and pθ and pω are param-
eterized functions with learnable parameters θ and ω, re-
spectively. Θl and Ωl are the parameter spaces. TP solves
Eq. (21) by alternately solving two problems:

fν∗l = argmin
fν
l ∈Fν

l

O(1)
l (24)

gµ∗l = argmin
gµ
l ∈Gµ

l

O(2)
l (25)

where O(1)
l is the layer-wise local loss in Eq. (6) and O(2)

l is
the reconstruction loss in Eq. (7).
Difference Target Propagation. DTP is also defined with a
search space Gl for gνl as follows:

Fµ
l = {id}, Fν

l = {pθ : θ ∈ Θl} (26)

Gµ
l = {pω : ω ∈ Ωl}, Gν

l = Gl (27)

where Gl = {gνl : dP (f
µ
l ◦ gl ◦ ψl ◦ fl,

gµl ◦ ψl ◦ fl + fµl − gµl ◦ fl) = 0} (28)

and dP with norm P (e.g., L2 norm) is a distance in the
function space.

Figure 1d shows the two functions fµl ◦gl◦ψl◦fl and gµl ◦
ψl◦fl+fµl −g

µ
l ◦fl in blue and red, respectively; namely, Gl

is the function subspace of gνl where these two functions (the
blue and red arrows in 1d) are equal. By assuming functions
fνl , ψl, g

µ
l are bijective, we have Gl = {ǧνl } where

ǧνl = id + (fνl )
−1 ◦ (ψl)

−1 ◦ (gµl )
−1

− gµl ◦ (ψl)
−1 ◦ (gµl )

−1. (29)

This is the exact form of difference correction in our formu-
lation. This shows that gνl is implicitly updated by updating
fνl and gµl . Therefore, DTP solves Eq. (21) by alternately
solving two problems:

(fν∗l , gν∗l ) = argmin
(fν

l ,gν
l )∈Fν

l ×Gν
l

O(1)
l , (gµ∗l , gν∗l ) = argmin

(gµ
l ,g

ν
l )∈Gµ

l ×Gν
l

O(2)
l

(30)



Figure 1: Proposed propagation architecture and its reduction to DTP. (a) The proposed architecture. The encoder fl is decom-
posed into fµl and fνl . The decoder gl is decomposed into gµl and gνl . ψl is the shortcut function from an activation hl to the
target τl. (b) Reduction to DTP. gνl is a function of difference correction. fµl is illustrated as non-identity function. (c) Reduction
to DTP, where fµl is illustrated as the identity function. This is the well-known visualization of DTP. (d) The search space Gl

for gνl . (e) FW-DTP with fixed gµl .

where the objective function is the same as that of TP.
Eq. (30) indicates that updating the feedforward weights im-
plicitly update gνl in the feedback path.
Fixed-Weight Difference Target Propagation. From
Eq. (29), we notice that DTP works even with fixed gµl be-
cause gνl is updated in conjunction with fνl . If the function
space Fν

l is large enough for finding an appropriate pair of
fνl and gνl , parametrization of the two function spaces Fν

l
and Gµ

l may be redundant. Based on this observation, FW-
DTP uses a unit set for Gµ

l :
Fµ

l = {id}, Fν
l = {pθ : θ ∈ Θl}, Gµ

l = {rl}, Gν
l = Gl

(31)
where rl is a fixed random function. FW-DTP solves
Eq. (21) by solving one problem:

(fν∗l , gν∗l ) = argmin
(fν

l ,gν
l )∈Fν

l ×Gν
l

O(1)
l . (32)

Figure 1e shows that in FW-DTP, gµl is fixed but gνl colored
in red moves with fνl , and thus there still exists an autoen-
coder gl ◦ fl. This is one of the reasons why FW-DTP has
an ability to propagate targets to decrease loss. To keep non-
linearity and the ability to entangle elements from different
dimension on the feedback path, rl(a) = σ(Bla) would be
the simplest choice whereBl is a random matrix fixed before
training and σ is a non-linear activation function. FW-DTP
is more efficient than DTP because it reduces the number of
learnable parameters.

4 Experiments
In this section, we show experimental results. First, we show
that the weak condition expressed in Eq. (16) is satisfied by
FW-DTP experimentally. We then compare FW-DTP with
TP and DTP variants. Lastly, we evaluate the hyperparam-
eter sensitivity and computational cost, and show that FW-
DTP is more stable and computationally efficient than DTP.

4.1 Weak and Strict Conditions of Jacobians
Experimental set-up. This experiment aims to show that
FW-DTP satisfies the weak condition of Jacobians given

by Eq. (16) during its training process. We also show that
FW-DTP does not satisfy the strict condition expressed in
Eq. (15) in contrast to DTP.

Evaluation details are as follows. For the weak condi-
tion, we directly measured the trace of JflJgl (With nota-
tions in Analysis 2, this is Jfν

l
Jgµ

l
). For the strict condition,

we measured the proportion of the number of non-negative
eigenvalues of JflJgl to its dimension. This is a measure of
positive semi-definiteness. The MNIST dataset (Lecun et al.
1998) was used for this evaluation. A fully connected net-
work with 6 layers each with 256 units was trained with
cross-entropy loss. Note that the first and the last encoders
are non-invertible due to the difference of the input and out-
put dimensions. We chose the hyperbolic tangent as the ac-
tivation function, but only for FW-DTP, batch normalization
(BN) (Ioffe and Szegedy 2015) was applied after each hyper-
bolic tangent. Stochastic gradient descent (SGD) was used
as the optimizer. The feedforward and feedback weights
were initialized with random orthogonal matrices and ran-
dom numbers from uniform distribution U(−0.01, 0.01), re-
spectively.
Results. Figure 2 shows the results of the last (sixth) layer
and the second layer as representatives of intermediate lay-
ers. In Figure 2a, we see that the trace of JflJgl is positive
from the first epoch, and is increasing during training pro-
cess of DTP and FW-DTP. In contrast, in Figure 2b, we see
the difference between DTP and FW-DTP. With DTP, all
eigenvalues are non-negative after the tenth epoch on both
layers. On the other hand, with FW-DTP, some of eigen-
values are negative. We see that ≈ 90% of eigenvalues are
non-negative in the last layer, but only ≈ 53% of them are
non-negative in the second layer.

These results confirm that FW-DTP satisfies only the
weak condition expressed in Eq. (16) automatically, while
DTP satisfies both of the weak and strict conditions.

4.2 Comparison with TP and DTP Variants
Experimental set-up. The purpose of this experiment is to
demonstrate that the performance of FW-DTP is comparable



(a) Trace of JflJgl (b) Positive semi-definiteness of JflJgl

Figure 2: The Jacobian conditions of FW-DTP and DTP on MNIST with the mean and standard deviation over five different
seeds. (a) Trace of JflJgl (the values of the trace on the 2nd layer of DTP are scaled by 0.1). We see that all values are positive.
(b) The proportion of non-negative eigenvalues. We see the difference between DTP and FW-DTP.

with or even better than that of DTP. We compared image
classification performance of TP (Bengio 2014), DTP (Lee
et al. 2015), DRL (Meulemans et al. 2020), L-DRL (Ernoult
et al. 2022), and FW-DTP on four datasets: MNIST (Le-
cun et al. 1998), Fashion-MNIST (F-MNIST) (Xiao, Rasul,
and Vollgraf 2017), CIFAR-10 and CIFAR-100 (Krizhevsky
2009). Following previous studies (Bartunov et al. 2018;
Meulemans et al. 2020), a fully connected network consists
of 6 layers each with 256 units was used for MNIST and
F-MNIST. Another fully connected network consists of 4
layers each with 1,024 units was used for CIFAR-10/100.
Because FW-DTP halves the number of the learnable param-
eters by fixing the feedback weights, we also report results
with a half number of leanable parameters with DTP, DRL
and L-DRL. The activation function and the optimizer were
the same as those used in 4.1.
Results. The results are summarized in Table 2. As can be
seen, FW-DTP is comparable with DTP and its variants.
FW-DTP outperformed DTP in all datasets. This supports
that FW-DTP works as a training algorithm even if it does
not satisfy the strict condition of Jacobians. This also con-
firms that even with fixed feedback weights, FW-DTP prop-
agates targets to decrease cross-entropy loss via the feedback
path with the function gνl for difference correction. Compar-
ison with DRL and L-DRL showed some limitation of FW-
DTP. FW-DTP outperformed them on MNIST, F-MNIST,
and CIFAR-10 when the number of learnable parameters
was the same. On CIFAR-100, the test error of FW-DTP
was not the best among them. However, when the number
of parameters was the same, the difference in the test error
between DTP and DRL or L-DRL was only ≤ 0.1%. Note
that the goal of this study is not to outperform them but to an-
alyze how and why FW-DTP works as a training algorithm
with empirical evidence.

4.3 Hyperparameter Sensitivity and
Computational Efficiency

Here, we investigate hyperparameter sensitivity and the
computational cost of FW-DTP to show that FW-DTP allevi-
ates the problems of DTP such as hyperparameter instability
and high computational complexity.

Hyperparameter sensitivity. We investigate how sensi-
tive DTP and FW-DTP are to different hyperparameters.
Namely, we tested 100 different random configurations.
More specifically, denoting by α ∈ RH the flattened hy-
perparameters where H is the number of hyperparame-
ters, each αi was randomly sampled so that log(αi) ∼
U(log(0.2ᾱi), log(5ᾱi)) where U is the uniform distribu-
tion and ᾱ is the hyperparameter used in 4.2. The histograms
of the test accuracies on CIFAR-10 are visualized in Fig-
ure 3. As can be seen, FW-DTP is less sensitive than DTP
to hyperparameters. This is because DTP needs the compli-
cated interactions between feedforward and feedback train-
ing, as discussed in the previous work (Bartunov et al. 2018),
while FW-DTP drops these complexities by relaxing the
conditions of Jacobians from the strict one to the weak one.
Computational Cost. We compare the computational cost
of each method on CIFAR-10 in Table 3. 4 GPUs (Tesla
P100-SXM2-16GB) with 56 CPU cores are used to mea-
sure computational time. For DTP, DRL and L-DRL, the
feedback weights are updated five times in each iteration.
FW-DTP is ≈ 3.0 times slower than BP and > 3.7 times
faster than DTP. This shows that BP is still better in terms
of computational cost, however, FW-DTP is one of the most
efficient methods in DTP variants.

5 Discussion
In this paper, we proposed FW-DTP, which fixes feedback
weights during training, and experimentally confirmed that
its test performance is consistently better than that of DTP
on four image-classification datasets, while the hyperparam-
eter sensitivity and the computational cost are reduced. Fur-
ther, we showed the strict and weak conditions of Jacobians,
by which we explained the difference between FW-DTP and
DTP. Finally, we discuss limitations and future work.
Biological plausibility. A limitation of FW-DTP is that it
does not fulfill some biological constraints such as Dale’s
law (Parisien, Anderson, and Eliasmith 2008) and spiking
networks (Samadi, Lillicrap, and Tweed 2017; Guerguiev,
Lillicrap, and Richards 2017; Bengio et al. 2008). We have
shown in Analysis 2 that the composite function fl◦gl forms
a layer-wise autoencoder even with fixed feedback weights



Table 2: Test error (%) obtained on four image classification datasets reported with the mean and standard deviation over five
different seeds. For the hyperparameter search, 5,000 samples from the training set are used as the validation set. The best and
the second best results are marked in bold and with an underline, respectively. The columns of #PARAMS is the number of
learnable parameters (the sum of numbers of feedforward and the feedback networks).

METHODS #PARAMS MNIST F-MNIST #PARAMS CIFAR-10 CIFAR-100

BP 0.5M 1.85±0.09 10.42±0.08 6.3M 46.16±1.15 75.96±0.52

FA (LILLICRAP ET AL. 2016) 0.5M 2.94±0.09 12.58±0.35 6.3M 51.33±0.81 77.43±0.21

TP 1.1M 78.99±2.04 − 13.0M − −
DTP (LEE ET AL. 2015) 0.5M 3.24±0.15 11.86±0.14 6.3M 52.17±0.79 77.89±0.39

1.1M 2.77±0.10 11.77±0.16 13.0M 52.01±0.80 77.11±0.20

DRL (MEULEMANS ET AL. 2020) 0.5M 3.13±0.03 12.75±0.52 6.3M 50.11±0.67 76.69±0.30

1.1M 2.84±0.09 12.15±0.25 13.0M 48.79±0.58 75.62±0.35

L-DRL (ERNOULT ET AL. 2022) 0.5M 3.14±0.03 12.45±0.36 6.3M 49.58±0.33 76.72±0.26

1.1M 2.82±0.10 12.29±0.46 13.0M 49.84±0.55 75.62±0.31

FW-DTP 0.5M 2.76±0.10 11.76±0.37 6.3M 48.97±0.32 76.76±0.45

Figure 3: Histogram of test accuracies achieved under different hyperparameters on CIFAR-10.

Table 3: Training time [sec] per epoch of FW-DTP, DTP,
DRL, L-DRL and BP on CIFAR-10.

TIME[SEC] RATIO TO FW-DTP ERROR[%]

FW-DTP 2.22±0.02 1.00±0.00 48.97±0.32

DTP 8.32±0.36 3.74±0.17 52.01±0.80

DRL 9.52±0.08 4.29±0.05 48.79±0.58

L-DRL 8.86±0.08 3.99±0.05 49.84±0.55

BP 0.76±0.03 0.34±0.01 46.16±1.15

because we have a function gνl derived from difference cor-
rection. However, allowing gνl ̸= id may harm biological
plausibility. Notably, this is not a problem only for FW-DTP.
If we apply DTP to a non-injective feedforward function,
a non-identity function gνl often remains. We hope our ex-
act formulation of DTP helps researchers to analyze the be-
haviour of DTP in future.
Scalability. Another limitation in this work is that all of
the four datasets are for image classification and are rela-
tively small. We chose them because of two reasons: 1) they
are suitable for analyzing Jacobian matrices during train-
ing to see the difference between FW-DTP and DTP, and 2)
they are suitable for repeating many experiments with differ-
ent hyper-parameters for evaluating the sensitivity. Recently,

some improved targets propagated beyond layers (Meule-
mans et al. 2020; Ernoult et al. 2022) perform comparable
with BP on large-scale datasets. From the point of view of
fixed feedback weights, these methods may be related to
the direct feedback alignment (Nøkland 2016; Crafton et al.
2019). Exploring a method to add such feedback paths effi-
ciently with some fixed feedback weights would be an inter-
esting and necessary direction for future work.

New research direction. In this study, we assumed fµl = id
in the decomposed encoder for a fair comparison of FW-
DTP with DTP and its variants. However, it is worth noting
that exploring non-identify fixed function fµl , as well as ex-
ploring different restrictions to the function space Ol would
open a new research direction. In particular, the following
symmetry in FW-DTP would be effective to explore new bi-
ologically plausible function families: fµl , g

µ
l are fixed, and

fνl , g
ν
l are determined by a parameter θ. This direction in-

cludes research topics about how to fix weights in conjunc-
tion with feedback alignment methods (Crafton et al. 2019;
Moskovitz, Litwin-Kumar, and Abbott 2018; Garg and Vem-
pala 2022), and how to parameterize paired functions with
some reparametrization tricks. Under the weak condition of
Jacobians, there must be fruitful function families that have
never been investigated for propagating targets.
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