

Association for the Advancement of Artificial Intelligence

Recognition and Learning Algorithm Laboratory

Ryo Moriai¹, Nakamasa Inoue¹, Masayuki Tanaka¹, Rei Kawakami¹, Satoshi Ikehata^{1,3}, Ikuro Sato^{1,2} ¹Institute of Science Tokyo, Japan, ²Denso IT Laboratory, Japan, ³ National Institute of Informatics, Japan

Introduction

Background- Modern Hopfield Networks (MHNs)

MHNs are energy-based models that can retrieve a semantically relevant data for a given query data.

Issue of MHN

For an out-of-distribution (OOD) query, MHN inevitably associates an inappropriate in-distribution (ID) data.

Contributions

- To address this, we propose **Rectified Lagrangian (RegLag)** that explicitly incorporates OOD queries with a specially designed attractor in the dynamical system of MHNs.
- RecLag-based MHNs yield higher OOD detection performance over existing energy-based methods on average using nine image datasets.

Large-Memory MHNs [D. Krotov+, ICLR2021; M. Widrich+, NeurIPS2021]

General Formulation of Energy Function

Energy landscape with attractors

Issue: An OOD query is associated with an irrelevant attractor.

Rectified Lagrangian for Out-of-Distribution Detection in Modern Hopfield Networks

Probability-Density Aware MHNs

Outline

OOD detection performance is evaluated against 5 baselines using 9 datasets.

Result

- RecLag-based MHNs yield higher OOD detection performance over baselines on average.
- RecLag-based MHNs also showed the highest accuracy in 23 out of 27 individual experimental settings.

[D. Hendrycks+, ICLR2017; W. Liu+, NeurIPS2020; Y. Sun+, NeurIPS2021; J Zhang+, ICLR2023]

Proposed Method: RecLag

Evaluation

Table: OOD detection performance as FPR95(%) \downarrow

Iethod		SVHN	LSUN-C	LSUN-R	iSUN	Places	DTD	TIN	SUN	iNatur
O TIAN IGANI	MSP	76.34	27.52	36.54	34.84	20.55	30.65	45.82	22.89	1
	Energy	56.05	8.10	11.60	9.10	3.18	16.98	25.47	3.27	
	ReAct	59.47	7.57	12.52	10.13	2.93	16.86	27.61	3.27	
	MHE	17.59	9.20	7.68	4.74	0.33	8.96	15.86	0.00	
	SHE	17.45	9.22	7.69	4.77	0.33	8.99	15.84	0.00	
	RecLag	18.12	6.40	4.60	2.67	0.28	6.82	12.09	0.00	
		± 2.02	\pm 0.25	\pm 0.12	\pm 0.47	\pm 0.02	\pm 0.13	\pm 0.25	± 0.00	±
	MSP	59.86	28.26	32.06	31.69	33.61	43.28	45.56	32.43	3
	Energy	30.51	6.84	9.43	8.47	9.32	23.74	25.16	8.99	1
	ReAct	45.86	14.37	14.09	13.28	15.83	29.73	31.60	15.53	1
	MHE	6.20	6.17	4.40	2.94	2.34	14.32	15.86	0.54	
	SHE	6.14	6.20	4.45	3.01	2.36	14.32	15.93	0.54	
	RecLag	5.19	5.60	2.85	2.11	2.31	12.04	11.71	0.33	
		± 0.24	\pm 0.07	\pm 0.05	\pm 0.05	\pm 0.03	\pm 0.07	\pm 0.23	\pm 0.11	±
	MSP	41.52	44.43	38.47	39.70	33.84	35.80	51.52	34.88	2
	Energy	15.35	17.77	14.98	17.45	10.58	19.71	36.75	9.54	
	ReAct	18.83	19.93	18.25	20.68	11.98	21.67	42.02	11.44	1
	MHE	5.40	14.60	12.03	11.48	2.90	10.99	27.28	0.82	
	SHE	5.25	14.39	13.18	12.39	2.83	10.98	28.35	0.82	
	RecLag	5.75	7.37	8.44	8.01	2.63	9.75	22.62	1.06	
		± 0.12	\pm 0.18	\pm 0.17	\pm 0.15	\pm 0.05	\pm 0.10	\pm 0.34	± 0.09	±

=> ' L	ISO AB
ТΟ	KYO
ξ*ν)	k
ually he ucte	ed.
v).	
-1]	ogγ
- -]	ogγ
alist	Average
2.62 3.47 3.80 2.35 2.38 1.68 0.04	$ \begin{array}{r} 34.19 \\ 15.25 \\ 16.02 \\ 7.41 \\ 7.41 \\ 5.85 \\ \pm 0.24 \\ \end{array} $
2.95 0.86 1.98 4.91 4.92 4.14 0.08	37.74 14.81 21.36 6.41 6.43 5.14 + 0.08
7.69 8.95 3.26 1.83 1.84 1.67 0.05	→ 0.00 38.65 16.79 19.78 9.70 10.00 7.47 ± 0.85

AAAI2025

Association for the Advancement of Artificial Intelligence

Recognition and Learning Algorithm Laboratory

Introduction

Modern Hopfield Networks (MHNs)

ergy-based models that can retrieve a relevant data for a given query data.

²-distribution (OOD) query, MHN does n-distribution (ID) data, which is totally

ss this, we propose Rectified Lagrangian a new Lagrangian that explicitly ates OOD queries with a specially designed in the dynamical system of MHNs. ag-based MHNs demonstrated higher OOD n performance over existing energy-based ection methods on average using nine tasets.

Formulation

Energy

Activation functions

Hidden-lay

$$L_{h} = \frac{1}{\beta} \log \left(\sum_{\mu=1}^{N_{H}} e^{\beta h_{\mu}} \right)$$

Discrete Update

Proposed Method

ame energy except the hiddengian is replaced by following

ayer Lagrangian (RecLag)

$$\left(\frac{1}{\beta}\log\left(\frac{1}{\gamma}\sum_{\mu=1}^{N_{H}}e^{\beta h_{\mu}}\right),0\right)$$

$$C(G(v^k)) \Xi^{\mathsf{T}} \text{softmax}(\beta \Xi v^k)$$

$$\operatorname{og}\left(\frac{1}{\gamma}\sum_{\mu=1}^{N_{H}}e^{\beta\xi_{\mu}\nu}\right)$$

$$(x \ge 0)$$
$$(x < 0)$$

 $\gamma \in \mathbb{R}_{\geq 0}$: Real hyperparameter

Energy Map Probability-based learning Each neuron in the hidden layer W is determined through optimization to 10.0_{1} corresponds to satisfy the following probability equation. the probability of 5.0 $p_H(\mu, \nu) = \frac{1}{7} e^{\beta \xi_\mu \nu} \propto f(h)_\mu$ the μ -th memory $2^{\circ} 0.0^{\circ}$ $\sum_{\mu=1} e^{\beta \xi_{\mu} v}$ (The Lagrangian of) = constthe hidden layer -5.0 corresponds to the probability -10.0 $Z \in \mathbb{R}$: normalized coefficient -5.0-10.0density relative to OOD sample \sim softmax(u) the memory's $\beta \Xi v$ parent distribution. Sampling from categorical distribution $W^* = \arg\min\mathcal{N}(\nu|\xi_{\mu};I_{M\times M})$

$$\log(p(v)) - \log$$

 \mathcal{N} : multivariate normal distribution $I_{M \times M}$: M-dimensional identity matrix

Rectified Lagrangian for Out-of-Distribution Detection in Modern Hopfield Networks

Ryo Moriai¹, Nakamasa Inoue¹, Masayuki Tanaka¹, Rei Kawakami¹, Satoshi Ikehata^{1,3}, Ikuro Sato^{1,2} ¹Tokyo Institute of Technology, Japan, ²Denso IT Laboratory, Japan, ³ National Institute of Informatics, Japan

> **Energy Map 2** Modern Hopfield Network (MHN) [D. Krotov+ 2021, Widrich et al. 2021] 10.0 $v \in \mathbb{R}^{N_V}$: visible layer neuron $h \in \mathbb{R}^{N_H}$: hidden layer neuron, β : real hyperparameter,

 $\Xi \in \mathbb{R}^{N_H \times N_V}$: matrix parameter,

 ξ_{μ} : μ -th column vector component of a matrix Ξ

$$E = \sum_{i=1}^{N_V} v_i g_i(v) - L_V(v) + \sum_{\mu=1}^{N_V} h_\mu f_\mu(h) - L_V(v) - f(h)^{\mathsf{T}} \Xi g(v)$$

Visible Lagrangian

 $f(h) = \frac{\partial L_H(h)}{\partial L_H(h)}$ ∂h

$$g(v) = \frac{\partial L_V(v)}{\partial v}$$

e rule
$$v^{k+1} = \Xi^{\mathsf{T}} \text{softmax}(B\Xi v^k)$$

$$v_i$$

This work was supported by JSPS KAKENHI Grant Number JP22H03642 and DENSO IT LAB Recognition and Learning Algorithm Collaborative Research Chair (Science Tokyo).

Inference network

Experiment

Method	SVHN	LSUN-C	LSUN-R	iSUN	Places	
MSP	76.34	27.52	36.54	34.84	20.55	
∞ Energy	56.05	8.10	11.60	9.10	3.18	
छ ReAct	59.47	7.57	12.52	10.13	2.93	
MHE	17.59	9.20	7.68	4.74	0.33	
🛎 SHE	17.45	9.22	7.69	4.77	0.33	
RecLag	18.12	6.40	4.60	2.67	0.28	
	± 2.02	\pm 0.25	\pm 0.12	\pm 0.47	\pm 0.02	±
MSP	59.86	28.26	32.06	31.69	33.61	
🛨 Energy	30.51	6.84	9.43	8.47	9.32	
D ReAct	45.86	14.37	14.09	13.28	15.83	
MHE	6.20	6.17	4.40	2.94	2.34	
🛎 SHE	6.14	6.20	4.45	3.01	2.36	
RecLag	5.19	5.60	2.85	2.11	2.31	
	± 0.24	\pm 0.07	\pm 0.05	\pm 0.05	\pm 0.03	±
MSP	41.52	44.43	38.47	39.70	33.84	
어 Energy	15.35	17.77	14.98	17.45	10.58	
4 ReAct	18.83	19.93	18.25	20.68	11.98	
\mathbf{Z} MHE	5.40	14.60	12.03	11.48	2.90	
≥ SHE	5.25	14.39	13.18	12.39	2.83	
RecLag	5.75	7.37	8.44	8.01	2.63	
-	+0.12	+0.18	+0.17	+0.15	+0.05	+

Objective

To evaluate OOD detection performance for RecLag.

Baselines

The FPR95 of the five OOD detection methods:{MSP,Energy,React,SHE,HE} **Settings**

Features of a CIFAR-10 pretrained network a OOD detection. In-distribution data: CIFAR-1 OOD data: {SVHN, LSUN_C, LSUN_R, iSUN, P Tiny Image Net, SUN, iNaturalist}.

For the proposed RecLag the trimmed mean standard deviations (following \pm symbols) c with the largest and the smallest ones being are reported.

en out-of-distribution (OOD) query, MHN does retrieve a memory data, totally irrelevant.

outions

dress this, we propose the rectified Lagrangian (RegLag), a new angian for memory neurons that explicitly incorporates an attractor for) samples in the dynamical system of MHNs.

demonstrate outperformance RecLag-based MHNs over energy-based) detection methods, including state-of-the-art Hopfield Energy, on nine ge datasets.

Modern Hopfield Network (MHN)

lation [D. Krotov+ 2021, Widrich et al. 2021]

$$G(v) = \frac{1}{\beta} \log \frac{1}{\beta}$$

$$p_H(\mu, v) = \frac{1}{Z} e^{\beta}$$

$$\log(p(v)) - \log$$

Energy Map

