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Abstract—For deploying deep neural networks on edge devices
with limited resources, binary neural networks (BNNs) have
attracted significant attention, due to their computational and
memory efficiency. However, once a neural network is binarized,
finetuning it on edge devices becomes challenging because most
conventional training algorithms for BNNs are designed for use
on centralized servers and require storing real-valued parameters
during training. To address this limitation, this paper introduces
binary stochastic flip optimization (BinSFO), a novel training
algorithm for BNNs. BinSFO employs a parameter update rule
based on Boolean operations, eliminating the need to store real-
valued parameters and thereby reducing memory requirements
and computational overhead. In experiments, we demonstrated
the effectiveness and memory efficiency of BinSFO in finetuning
scenarios on six image classification datasets. BinSFO performed
comparably to conventional training algorithms with a 70.7 %
smaller memory requirement.

I. INTRODUCTION

There is a high demand for implementing deep neural
networks on memory-constrained edge devices. Binary neural
networks (BNNs) have become a promising solution due to
their ability to significantly reduce model size and computa-
tional complexity [[1]-[7]. The core concept of BNNs is to
represent activations and parameters by binary values (e.g.,
=£1) so that test-time inference solely relies on computationally
efficient Boolean operations.

For training BNNs, a number of studies have proposed
techniques for improving effectiveness and efficiency. The
straight-through estimator (STE) [8] is the most commonly
used technique; it allows the backpropagation of gradients
with non-differentiable operations, such as the sign function
for binarization, through approximated gradients. Follow-up
studies have explored more effective estimators, such as those
implemented in EDE [9], DSQ [10]], FDA [11]], RBNN [12],
and ReSTE [13]]. In these methods, real-valued parameters are
quantized to produce binary ones in the feedforward process
and updated by approximate gradients using STE. The need
to keep real parameters in training demands considerable
memory usage, limiting the potential for finetuning BNNs on
memory-constrained edge devices with small datasets.

Some studies have discussed training BNNs with discrete
optimization algorithms, such as those for mixed integer pro-
gramming and constraint programming [14]-[16]. However,
these algorithms are non-stochastic and the memory require-
ments increase with the size of the training dataset, making

their application impractical even for small datasets such as
MNIST.

To address this limitation, this paper proposes binary
stochastic flip optimization (BinSFO), a stochastic training
algorithm that does not require storing real-valued parameters
during training. Specifically, BinSFO introduces the binary
parameter update rule based on Boolean operations and applies
it iteratively for training BNNs. In experiments, we demon-
strated the effectiveness and memory efficiency of BinSFO
in finetuning scenarios on six image classification datasets.
BinSFO performed comparable to ReSTE [[13]] under a 70.7%
reduction in the memory requirements.

II. RELATED WORK

BNNs [1] have been studied from both architectural
and optimization perspectives. Convolutional architectures are
the major architecture. Examples include XOR-Net utilizing
channel-wise scaling [17], ABC-Net with weight approxima-
tion [18]], Bi-RealNet incorporating shortcut propagation [[19],
and ReActNet with the RPReLU activation function [20].
Recently, transformer- and MLP-based architectures such as
BinaryViT [21], BiT [22], and BCDNet [23]] have also been
demonstrated to be effective.

Optimization techniques and gradient estimators have been
investigated to bridge the gap between continuous and binary
values [8]-[13]]. For example, ReSTE [13|] is a function-
based estimator that flexibly balances the estimation error and
gradient stability. Traditional optimization methods, such as
SGD and Adam [24], are widely used for training BNNs.
There have also been studies discussing their effectiveness
and extensions, such as AdamBNN [25] and Bop [26]. In
most studies, real-valued parameters are stored during training
to perform backpropagation with approximated gradients, and
this constraint has traditionally been considered necessary.
However, in the context of finetuning with small datasets, this
may not always be required, motivating us to explore a training
algorithm based on Boolean operations.

III. PROPOSED METHOD

This section introduces BinSFO, a training algorithm for
BNNSs developed in this study having a parameter update rule
based on Boolean operations, which eliminates the need to
store real-valued parameters during training.
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(a) SGD in the real space (b) BinSFO in the Hamming space

Fig. 1: Comparison of parameter update rules.

A. Notation and settings

Let b € HY be a binary vector that represents flattened
learnable parameters of a BNN, where HY = {0,1}" is a
Hamming space and N is the number of parameters. While
most previous studies use B = {1,—1} to denote binary
parameters, we use H = {0, 1} to make the discussion concise
with Boolean operations: OR a+b, AND a-b, and NOT @ for
a,b € H. We consider an iterative algorithm with the iteration
index ¢ € N and denote by b; € HY the parameters at t.

B. Algorithm

Updating binary parameters. The parameter update rule of
BinSFO is derived by constraining the update rule of SGD,
defined in the real space R, to the Hamming space H".
With SGD, real-valued parameters w; € R” are updated at
each iteration by the following rule:

wy < (1 —n)w;_1 +nwy, (D

where w; = w;_1 — g; is a target, g; is a loss gradient, and
7 is a hyperparameter. When 1 € [0, 1], this update rule is
equivalent to solving the following minimization problem:

wy = argmin ([|wi—1 — pll2 + wy —pll2). @
peERN

This is because w; is an interpolation of w;_; and w{ as
shown in Figure [Tal Note that the solution of this minimization
problem exists as the set of points W; C R™ given by

Wy ={w;:wy =1 —n)wi—r +n-wp, ne€l0,1]}, 3

and specifying a value for 7 yields a unique solution in W;.
BinSFO replaces RY in Eq. with HY, giving rise to the
following binary optimization problem:
b, = argmin (d(b¢—1,p) + d(b;, p)), “)
peHN

where d(a, b) = |{i : a; # b;}| is the Hamming distance. The

solution exists as the set of points B; C HY given by
Bi={b,:by=m b1 +m-b;, mecH"}. (5

In analogy to SGD, specifying values for m yields a unique
solution as shown in Figure [Ib] Consequently, BinSFO uses
the following rule to update binary parameters:

bt%mt'bt—l +mtb2‘ (6)

Algorithm 1: BinSFO

Requires: L-layer BNN F, Initial parameters {b(()l)}{‘zl,
Training dataset Dirain, Hypermask distribution P, Loss L.
fort=1to 7T do
(2, y) ~ Dirain # Draw a mini-batch
Yy < F(x) # Forward pass
for [ =L to 1 do
gt(l) +— V) L(y,y) # Compute the gradient
b [g") < 0] ] # Compute the target
m{ ~ P(my|bs—1,g¢) # Draw a hypermask
OPIES G Gt pett

return {b<Tl) Ve,
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Fig. 2: Graphical models.

This rule ensures that b, € By, but it requires the determination
of bj € HY and m, € HY, which we refer to as the target
and hypermask, respectively.

Target. We define the target as b} = [g: < 0], where [P]
takes 1 if the proposition P is true and O otherwise in an
element-wise manner. This helps reduce the loss corresponding
to the mini-batch at each iteration because updating parameters
in the direction opposite to the gradient can decrease loss. This
step temporarily requires calculating the gradient g, in the real
space, but not storing real-valued parameters.

Hypermask. We sample a hypermask m,; from a probabilistic
distribution P(my|b;_1,g:) at each iteration as detailed in the
next subsection.

Algorithm. The learning procedure of BinSFO is summarized
in Algorithm [I] It applies the parameter update rule in Eq. (6]
for each layer of a BNN.

C. Hypermask sampling

We define the hypermask distribution to bridge the gap
between SGD and BinSFO. Specifically, we derive the dis-



TABLE I: Full fine-tuning results. Test accuracies (%) are reported for each dataset. Bit-widths for weights are the values for
training/testing. Total memory required for training relative to ReSTE [13]] is shown in the last column.

Method | Bit-widths | CIFAR-10 CIFAR-100 Caltech-101 ~Caltech-256  Flowers Pets Average Total
memory (%)
w STE 32/1 92.2910.23 75.1940.03 94.2540.30 81.7140.33 96.4640.16 89.2440.52 | 88.19 68.1
4 Bop 32/1 92.3640.08 74.67+0.06 94.3140.35 81.7540.27 96.274+0.11 89.5940.74 | 88.16 71.9
2 ReSTE 32/1 92.6410.10 75.3310.20 94.36+0.16 81.7310.25 96.5310.19 89.841(0.59 | 88.40 100.0
& BinSFO 1/1 92.61+0.10 75.3540.32 94.4610.30 82.1540.43 96.5610.12 89.5910.51 | 88.45 33.1
- STE 32/1 92.3640.24 75.43+020 94.3240.39 82.2740.32 95.784+0.31 90.1840.21 | 88.39 73.5
2 Bop 32/1 92.29410.00 75.4540.24 94.3640.28 82.4540.27 95.8340.17 90.0540.67 | 88.40 77.0
8 ReSTE 32/1 92.77+0.22 75.53+0.07 94.4040.28 82.691026 96.0440.18 90.2240.40 | 88.60 100.0
M BinSFO 1/1 92.8510.14 75.5840.16 94.441024 82.5210.23 96.17410.35 90.54.10. 72| 88.68 29.3

tribution from the graphical models that represent the com-
putational flows for SGD and BinSFO as shown in Figure [2]
The first flow in Figure [2a] binarizes parameters after applying
the update rule of SGD in Eq. (I), which produces w; =
[w; > 0] € HY. This is a conventional flow and requires that
real-valued parameters be stored during training. The second
flow in Figure 2b]is the computational flow for BinSFO based
on Eq. @) Because w;_; € RY is not observable, it is treated
as a latent variable. This flow eliminates the need to store real-
valued parameters.

Given these two flows, the gap between SGD and BinSFO
lies in the difference between w; and b,. The oracle hypermask
m; that results in w; = b; must exist. However, without
observing w;_1, it is impossible to compute the oracle hyper-
mask. To address this problem, we introduce a probabilistic
approach and design the hypermask distribution that satisfies

E[w] = E[b], ()

where E[-] denotes expected value.

To explicitly define the hypermask distribution, we assume
that elements of w;_1,g; are ii.d. and follow Gaussian
distributions; that is, we assume

gii ~ N(0,67), wi—1,; ~N(0,67,), (8)

where &, is the variance of gradients, 67 = 67 , + 16> is
the iteratively estimated parameter variance, and ¢ is the ele-
ment index. Under this assumption, the following hypermask
distribution satisfies the condition of Eq. (7):

P(my; = 1wi—1,4, 9t.4)

_ {erf(maX(Tt—lgt,ia 0) (wi—1:=1)

R
(wi—1,; =0) ®

—erf(min(r—19:,:,0))

where 7,_1 =1/ V20,_1 is a temperature and erf is the error
function given by erf(z) = = ["e~* dt. This distribution

was derived by applying Bayes’ theorem to the joint distribu-
tion P(wWy i, wi—1,i, gr,;) using the graphical model.

IV. EXPERIMENTS

This section demonstrates the effectiveness of BinSFO in
finetuning scenarios on six image classification datasets.

A. Experimental settings.

Datasets and evaluation metric. The six image classification
datasets were used for finetuning: CIFAR-10 [27], CIFAR-
100 [27], Caltech-101 [28]], Caltech-256 [29], Flowers [30] and
Pets [31]]. Accuracy on each dataset was used as the primary
evaluation metric. For pretraining, the ImageNet dataset [32]]
was used and a pretrained BNN was assumed to be given in
the finetuning phase.

Network architectures. Two BNN architectures were used:
ReActNet [20]], [25] and BCDNet [23]]. ReActNet is a convo-
lutional architecture that uses the RPReLU activation. BCDNet
is a hybrid architecture consisting of binary convolution blocks
and binary MLP blocks.

Baselines. We chose three baselines: STE [8]], Bop [26],
and ReSTE [13]]. They store real-valued parameters during
finetuning, whereas BinSFO does not.

Implementation details. Each BNN was finetuned for 400
epochs using a cosine-decay scheduler with an initial learning
rate of 1072. The SGD optimizer was used for the conven-
tional methods. The variance 6; was computed at each itera-
tion from the observation of g; and 6y was set to 1. ReActNet
consisted of fourteen layers. BCDNet was constructed with
nine convolutional blocks and eleven binary MLP blocks.

B. Experimental results

Full finetuning. Table [I| shows the full finetuning results. As
shown, BinSFO performed comparable to the conventional
methods, slightly outperforming ReSTE in terms of average
accuracy across the six datasets, with memory consumption
reduced by 66.9% and 70.7% with ReActNet and BCDNet,
respectively. These results demonstrate both the effectiveness
and the memory efficiency of BinSFO.

Partial finetuning. To analyze the trade-off between memory
consumption and accuracy, we conducted partial finetuning
experiments, where the parameters in the first k£ layers are
frozen. Figure E] shows the results. As shown, BinSFO was
more memory-efficient and effective for all k, demonstrating
the ability to significantly reduce memory consumption while
maintaining or even improving accuracy.

C. Analysis

Comparison to the oracle hypermask. To evaluate the
gap between the sampled hypermasks m; and the oracle
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hypermasks m; that satisfies w; = by, FigureElplots the con-
ditional expected values E[m,|g;] and E[m}]|g;] as functions
of g;. Note that black dots represent estimated values obtained
through the flow in Figure 24| using real-valued parameters. As
shown, the two expected values aligned well. This confirmed
the correctness of the hypermask distribution in Eq. (9).

Justification of the assumption. To justify the assumption
in Eq. (8), Figure [ shows the distributions of the gradient
values g; and parameters w;_;. We observed that the gradient
value distribution is very close to a Gaussian distribution
with a mean of zero, but the parameter distribution gradually
deviates from Gaussian as learning progresses. This shows
that our assumption is reasonable, but there will likely be a
need to relax the assumption in future work. Figure [6] shows
scatterplots for the joint distribution. We observed no strong
correlation between elements of g, and w;_1, supporting our
assumption that they are independent.

Memory. Figure [7] shows a breakdown of memory con-
sumption during training. Since BinSFO eliminates the need
to store real-valued parameters, it exhibits a significantly
reduced memory consumption for storing the parameters. To
further reduce the memory consumption, binarizing the whole
backpropagation process would be challenging but interesting
future work.
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layer. The dashed curves are zero-mean Gaussian distributions
with the empirical variance.
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V. CONCLUSION AND DISCUSSION

This paper introduced BinSFO, a training algorithm for
BNNSs that eliminates the need to store real-valued parameters
during training. We analyzed graphical models representing
computational flows of SGD and BinSFO, and derived a
probabilistic distribution from which a hypermask is sampled
at each training iteration. In experiments, we demonstrated the
effectiveness and memory efficiency of BinSFO on six image
classification datasets. It was found that BinSFO performed
comparable to ReSTE while consuming significantly less
memory. For future work, fully binarizing the backpropagation
procedure would seem to be an interesting direction to explore.
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