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ABSTRACT

We propose Gumbel-NeRF, a mixture-of-expert (MoE) neural
radiance fields (NeRF) model with a hindsight expert selec-
tion mechanism for synthesizing novel views of unseen ob-
jects. Previous studies have shown that the MoE structure
provides high-quality representations of a given large-scale
scene consisting of many objects. However, we observe that
such a MoE NeRF model often produces low-quality repre-
sentations in the vicinity of experts’ boundaries when applied
to the task of novel view synthesis of an unseen object from
one/few-shot input. We find that this deterioration is primar-
ily caused by the foresight expert selection mechanism, which
may leave unnatural discontinuity in the object shape near
the experts’ boundaries. Gumbel-NeRF adopts a hindsight
expert selection mechanism, which guarantees continuity in
the density field even near the experts’ boundaries. Experi-
ments using the SRN cars dataset demonstrate the superiority
of Gumbel-NeRF over the baselines in terms of various image
quality metrics. The code will be available upon acceptance.

1. INTRODUCTION

Construction of 3D representations of unseen objects from 2D
observations is important for various applications in robotics
and autonomous driving, such as semantic mapping [1–3], ob-
stacle avoidance [4–6] and scene understanding [6,7]. One of
the difficulties in this long-standing problem lies in captur-
ing detailed properties of objects, including 3D-shape, tex-
ture, material, and reflectance. It becomes even more chal-
lenging due to ill-posedness, when only partial observations
are available. As an illustrative example, methods of 3D rep-
resentation construction for novel-view synthesis from one-
or few-shot observations are still in high demand for an au-
tomotive application of 360-degree surrounding-view system
that synthesizes a bird’s-eye view near the ego-vehicle.

Extensive studies have been conducted to construct 3D
scene representations. Conventional geometric reconstruc-
tion methods [8, 9] incrementally create explicit representa-
tions based on dense observations but struggle to recover un-
observed regions. Approaches based on learned discrete rep-
resentations can model high-level features [10, 11], but they
tend to require high resolution and high computational cost.
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Fig. 1: Overview of Gumbel-NeRF. In the forward pass, a
set of experts are processed to return densities and radiances.
Out of N experts, only one expert with the highest density is
selected. This maximum-pooling expert selection guarantees
continuity in the final density field, like the original NeRF.
Each expert is associated with an expert-specific latent code
so that the expert learn to model a part of the object.

In contrast, works that utilize continuous representations im-
plicitly reconstruct objects as learnable functions, providing
potential to capture fine details [12–15].

Recently, Neural Radiance Field (NeRF) [15] has emerged
as a milestone in the realm of continuous implicit represen-
tations, primarily designed for single, small-scale scenes.
While NeRF is capable of generating remarkably high-quality
synthesized images, it typically requires hundreds of images
for training and must be optimized separately for each scene.

To overcome the constraints, CodeNeRF [16], extended
the original, scene-specific NeRF to model multiple and un-
seen instances of a semantic category. By conditioning on
learnable instance-specific latent codes, CodeNeRF can syn-
thesize novel views of an unseen instance even from highly
limited input views. However, as CodeNeRF tries to encapsu-
late the entire properties into global latent codes using shared
MLP, it sometimes struggles to adequately represent the vari-
ations of a semantic category when the instances have diverse
shapes and appearances.

To enhance the expressivity of NeRF models, Switch-
NeRF [17], employed mixture-of-experts (MoE) structure
to better represent large-scale scenes. The MoE has a gate
module that selects a single expert per input and the selected
expert computes the density and radiance. The set of experts,



the gate module, and the other shared parameters are jointly
optimized for a given scene and tested on the same scene.

In this work, we tackle the problem of high-quality novel-
view syntheses for unseen car instances from one/few-shot
input in the aim of enriching automotive applications. A car
is composed of parts, such as wheels, roof, doors, etc., each
of which is often visually similar to those in other cars. Such
a commonality would be well handled by a part-based for-
mulation. Intuitively, adopting the MoE structure similar to
Switch-NeRE into CodeNeRF with part-specific latents ap-
pears to be a good solution for enhancing both expressiv-
ity and generalization. However, we observed that the naive
combination of the two results in a deterioration in the recon-
structed shape around experts’ boundary (see the black car
in Fig. 3-CSN). We hypothesize that the primal cause of the
deterioration comes from the foresight expert selection mech-
anism; i.e., the gating network selects an expert before pro-
cessing the experts. Due to this gating mechanism, the best
expert may not be always chosen in terms of rendering qual-
ity, thus it often results in unnatural discontinuity near the
experts’ boudaries. We remark the discontinuity is an issue
specific to novel view syntheses for unseen instances.

To address the above issue, we propose Gumbel-NeRF,
a conditional MoE NeRF utilizing the hindsight expert se-
lection mechanism as depicted in Fig. 1. Gumbel-NeRF re-
places the gate network in Switch-NeRF with the simple max-
imum pooling on the densities from the experts. By this con-
struction, Gumbel-NeRF guarantees continuity in the density
field that the entire model returns, just like the original NeRF.
In addition, we introduce expert-specific codes that represent
different parts of a given car so that the experts specifically
learn to model the corresponding parts, whereas CodeNeRF
uses a single code for an entire object. We let the model learn
the way to decompose into parts, instead of giving supervi-
sion about parts. Equipped with the enhanced expressivity
and adaptability to test instances, Gumbel-NeRF outperforms
the baselines in terms of several image quality metrics on a
public benchmark of multi-instance view synthesis of cars.

2. RELATED WORK

2.1. Neural Radiance Fields

NeRF [15] has achieved impressive success in the field of 3D
scene representation and novel view synthesis. Using only
multi-view supervision, NeRF models the volume density σ

and the emitted radiance c of a scene by a continuous function
FΘ of 3D spatial coordinates x and 2D viewing direction d as

FΘ : (x, d) 7→ (c,σ). (1)

This function is commonly approximated by MLPs. The con-
structed radiance fields can then be rendered into pixel values

by volume rendering [18] given by

Ĉ(r) =
Np

∑
i=1

Ti(1− exp(−σiδi))ci, (2)

where Np is the number of sampled points along ray r, δ is
the distance between two adjacent sample points, and

Tn = exp

(
−

n−1

∑
m=1

σmδm

)
(3)

can be interpreted as the accumulated transmittance up to
sample n. Comparing to discrete, explicit representations
that are usually limited by resolution, the implicit nature of
NeRF allows synthesizing photorealistic images from arbi-
trary viewpoints. Despite the success of NeRF, one obvious
drawback is that NeRF cannot handle test scenes with lim-
ited observations, since it was originally designed to model a
single scene.

2.2. Conditional NeRF

A family of work [16,19–23] extends the capabilities of NeRF
to deal with multiple objects by conditioning the field repre-
sentation with a set of tunable latent variables z encoded with
some prior knowledge. By adjusting z, a field representation
can be controlled to represent different objects or scenes. A
conditional NeRF can be generally formulated as:

FΘ(x,d,z) 7→ (c,σ). (4)

The choice of encoding method and conditioning schemes
varies across different works. CodeNeRF [16] jointly opti-
mizes a set of instance-specific latent codes along with Θ.
During test time, given one or several images of a novel
instance, CodeNeRF reconstructs its shape and synthesizes
novel views by optimizing the instance-specific latent code.
In contrast, PixelNeRF [19] directly obtains latents by ex-
tracting local features from input views with a CNN en-
coder, allowing conditioning on the rendering of the target
view. Subsequent works [20] proposed different aggregation
method of extracted local features. AutoRF [21] combines the
characteristics of both approaches by employing an autoen-
coder to encode instance-specific latent codes. This enables
image synthesis without test-time optimization, while also
allowing refinement of image quality through such a process.
Nevertheless, stronger supervision requirements including
3D bounding box and panoptic masks are needed.

2.3. Decomposed NeRF

Another family of work [17, 24, 25] decomposes NeRF into
multiple sub-models to enhance the network expressivity. The
optimization process of a NeRF model involves memorizing
the entire scene, and as the scene size scales up, the synthe-
sized image quality tends to deteriorate. Dividing the scene
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Fig. 2: (a) Architecture of Gumbel-NeRF. Trainable parameters, output vectors and our proposed expert selection layer are
shown in green, yellow and pink boxes, respectively. FC refers to fully-connected layer and PE refers to positional encoding. zs

n
denotes the expert-specific shape code for n-th expert. Different from Switch-NeRF [17], Gumbel-NeRF processes all experts
in parallel to produce candidate densities σ1···N and intermediate features hL

1···N . The layer G samples the output from only
one expert using the Gumbel-Max trick. (b) Scheduling the temperature parameter. The temperature parameter used in the
Gumbel-Max trick is scheduled to control level of randomness through the training process. In the early stage, the temperature
is set high so that all experts have nearly equal chance to be selected (rival stage). In this stage, each expert obtains sufficient
gradient updates, avoiding collapse (i.e., a vicious cycle where only one expert obtains all the gradient updates and other experts
are under-optimized). Toward the end, the temperature is decreased to make experts distinct (expert stage).

into distinct regions and assigning a neural network to each
region can effectively address this problem.

To achieve this decomposition, different approaches have
been proposed. Block-NeRF [24] design hand-carft decom-
position methods based on distance and street blocks, re-
spectively. Another approach, Switch-NeRF [17], combines
NeRF with a Sparsely-Gated Mixture of Experts (MoE) [26]
framework, where the dispatchment of inputs to the experts
(NeRFs) is determined by a jointly-optimized gating network.
This approach improves the overall performance by reducing
inconsistencies among sub-models and better balancing the
complexity of the scene.

Decomposing NeRF also brings the benefit of enabling
scene editing capabilities. GIRAFFE [22] uses multiple gen-
erative NeRFs to model a scene with multiple objects, which
allows for explicit control over individual objects in a scene,
offering a disentangled manner of manipulation. PartNeRF
[25], decomposes an object category into several semantic
parts. Each part is handled by a separate NeRF network,
which is trained in its own local coordinates. They employ
complicated loss terms to ensure reasonable division of ob-
jects. We note that shape editing is not our goal.

3. METHOD

As shown in Fig. 1, our proposed method follows the basic
formulation of conditional NeRFs given in Eq. 4, which tar-
gets in modeling multiple instances within the same semantic
category. Following CodeNeRF [16], our method jointly opti-
mizes the neural radiance field FΘ, the latent code mapper DΦ,
and a set of instance-specific latent codes {zm =(zs

m,zt
m)}M

m=1,
where M denotes the number of instances in the training set

and (zs
m,zt

m) represent the shape and texture latent codes, re-
spectively. At test time, we optimize the instance-specific la-
tent codes with frozen FΘ and DΦ.

Fig. 2a illustrates the architecture of our proposed ap-
proach, which consists of two key elements: (i) a set of N ex-
perts, each of which couples to corresponding expert-specific
latent codes, and (ii) an expert selection mechanism that se-
lects a single expert for a given input. To effectively train the
experts, we introduce (iii) a rival-to-expert training strategy
that controls the level of randomness through the training so
that different experts grow to model different parts of objects
(see Fig. 2b). These elements are described in detail below.

3.1. Part-Specific Experts

Similar to Switch-NeRF [17] and PartNeRF [25], the neural
implicit representation FΘ consists of a set of N sub-models
{EΘn}N

n=1, which we refer to as experts. In addition to the
original 5D inputs (location x and viewing direction d), each
expert EΘn is exclusively conditioned on part-specific latent
codes zm,n = (zs

m,n,zt
m,n), associated to m-th instance and to

n-th expert. Here, N is a pre-defined constant.
The experts’ design is adopted from that of the vanilla

NeRF [15], such that EΘn is composed of two parts: a shape
MLP Es

Θn
and a texture head Et

Θn
. The density σ depends only

on x, while the radiance c depends on both x and d. Follow-
ing Switch-NeRF, the texture code and the texture head for
predicting the final outputs are designed to be shared across
experts; namely, zt

m = zt
m,n,E

t
Θ
= Et

Θn
,n = 1, · · · ,N.

To obtain the expert-specific latent codes, we utilize a
latent code mapper DΦ that includes separate mappings for
shape Ds

Φ
and texture Dt

Φ
. The shape mapping consists of N



linear functions that map the instance-specific shape codes zs
m

to N expert-specific shape codes {zs
m,n}N

n=1 associated to cor-
responding experts. As for the texture codes, since a unified
RGB head is used, we let the texture mapping Dt

Φ
be simply

an identity function. Formally, the latent code mappers are
given as:

Ds
Φ : zs

m 7→ {zs
m,n}N

n=1, (5)

Dt
Φ : zt

m 7→ zt
m, m = 1, . . . ,M. (6)

The expert parameters and the corresponding code are op-
timized in a co-adaptive manner so that the expert-code pair
well represents a specific part of the target object. We will em-
pirically show that the experts can learn to decompose objects
into similar parts without explicit supervision about parts. We
omit subscript m for simplicity in the rest of the paper.

3.2. Density-Based Expert Selection

Gumbel-NeRF adopts the hindsight, density-based expert
selection rule, as opposed to the foresight gating network
adopted in Switch-NeRF [17]. Use of a gating network to
select an expert before processing experts might sound rea-
sonable for our task setting; however, we have observed that
the foresight gating mechanism often degrades the model per-
formance, as is also evident in other literature [27]. The MoE
design in Switch-NeRF bars the gating network from sharing
information from experts, resulting in a solely location-based
expert selection mechanism. The design is well-suited for a
single, large-scale scene. This is because the complexity of
a single scene is fixed so that Switch-NeRF can efficiently
decompose the scene into regions, each of which can then
be treated by vanilla NeRF reconstructions. However, in our
task setting, we argue that the capacity of experts may be bet-
ter leveraged when they specialize in handling regions with
similar shape and appearance properties, not locations, across
many instances. Moreover, the MoE design in Switch-NeRF
does not guarantee continuity in the predicted density field,
as opposed to the original NeRF. Especially for the task of
novel view syntheses of unseen instances, we observed un-
natural discontinuity in the predicted density field, resulting
in severe deterioration of synthesizing quality (see the black
car in Fig. 3-CSN).

To overcome the abovementioned issues, we devise to put
the expert selection after the expert blocks. With this con-
struction, the expert selection relies on as much information
provided by the experts as possible. In our proposed method,
the given inputs pass through all the shape MLPs, and only
one of the outputs contributes to the final neural field. This
process is formulated as:

Es
Θn

: (x, zs
n) 7→ (hL

n ,σn), n = 1, . . . ,N (7)

G : {(σn, hL
n)}N

n=1 7→ (σ , h), (8)

where h are intermediate features. The expert selector G ba-
sically adopts the maximum pooling on the densities returned

by the experts; i.e., an expert having the largest density is only
used and the other experts are ignored. With this construc-
tion, the model guarantees continuity in the predicted density
field. To address the router collapse, in which a particular ex-
pert is always chosen, we employ the Gumbel-Max trick [28].
Namely, Gumbel noises are added to the output densities to
control the chance rate for n-th expert to be selected. We first
treat {σn}N

n=1 as the unnormalized “probabilities” and cal-
culate the normalized log probabilities using a LogSoftmax
function:

logitsn = log

(
exp( logσn

τ
)

∑
N
i=1 exp( logσi

τ
)

)
, n = 1, . . . ,N, (9)

where τ is the temperature parameter to control the level
of randomness, which will be further discussed in Sec. 3.3.
Then, the output is selected by:

σ = 1max(logits+g) · (σ1,σ2, . . . ,σN), (10)

hL = 1max(logits+g) · (hL
1 ,h

L
2 , . . . ,h

L
N), (11)

where

1max(y) = δ
⊤
n,argmax

i
(yi)

=

{
1 if n = i
0 otherwise

, n = 1, . . . ,N
(12)

is a one-hot vector having 1 in the index corresponding to the
maximum value of a vector y, and g is a vector of N i.i.d.
Gumbel noise samples drawn from the standard Gumbel dis-
tribution using the inverse transform sampling technique:

g j ∼− log(− log(Uniform(0,1))), j = 1, . . . ,N. (13)

3.3. Rival-to-Expert Training Strategy

The temperature parameter τ > 0 in Eq. 9 plays a crucial role
in determining the level of randomness of G. When τ goes
large, the Softmax approaches the uniform distribution, re-
sulting in nearly random sampling. In contrast, smaller τ

encourages a more consistent distribution, where the logits
maintain their original ranking and are less affected by the
added Gumbel noise.

During training, we schedule τ using a cosine annealing
followed by a constant final value as

τ(t) =

{
τmin +

τmax−τmin
2

(
1+ cos π t

Tmax

)
if t ≤ Tmax

τmin otherwise,
(14)

where τmax,τmin,Tmax are the initial temperature, final tem-
perature, and the duration of cosine annealing in terms of the
percentage of the total training iterations, respectively (See
Fig. 2b). By this scheduling, during the earlier stage, a higher
level of randomness is introduced in selecting the experts. We



refer to this stage as the rival stage, where all experts have a
similar chance to be selected and acquire gradient updates. In
this stage, the experts act as rivals, collectively modeling the
overall scene in a coarse manner. As temperature approaches
τmin, the training proceeds to the expert stage. During this
stage, the experts becomes “real experts,” as the selection pro-
cess reaches a more stable state. This stability enables them to
focus exclusively on the regions of interest and continuously
refine the reconstruction quality throughout the remainder of
the training process. This rival-to-expert training scheme ef-
fectively prevents the router collapse problem and training in-
stabilities without the use of additional loss terms. The entire
model is trained in an end-to-end manner by minimizing the
photometric loss:

min
Θ,Φ,{zm}M

m=1
∑

r∈R

∥Ĉ(r)−C(r)∥2, (15)

where Ĉ, C and R are the rendered pixel value, the ground
truth pixel value and the set of rays in a training batch, re-
spectively.
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Fig. 3: Qualitative results of novel view synthesis of un-
seen objects using one-shot test-time optimization. Com-
pared to CodeNeRF (CN) and Coded Switch-NeRF (CSN),
our Gumbel-NeRF (GN-C) generally produces higher qual-
ity, especially for those parts marked by red boxes.

4. EVALUATION

4.1. Datasets

We conduct experiments on a re-rendered version of the “car”
category of ShapeNet [29] dataset provided by SRN [14].
ShapeNet contains 3,514 instances of cars (2,458 for train-
ing, 704 for testing and 352 for validation). Each training
instance accompanies 50 images rendered from random view-
points, while each testing instance accompanies 251 images
rendered from the same set of pre-defined camera poses on an
Archimedean spiral. All images contain a single foreground
car against a white background.

4.2. Baselines

We compare our method, Gumbel-NeRF, with CodeNeRF
[16], which is also capable of handling multi-instance dataset
with only 2D supervision. To show the effectiveness of
our gate-free, density-based expert selection design, we also
compare it with “Coded Switch-NeRF”, a naive extension of
Switch-NeRF [17] where their gating network and experts
are conditioned on latent codes. The components of Coded
Switch-NeRF can be written as:

G :
(
x,zs; {zs

n,FΘn}
N
n=1
)
7→
(

zs
n∗ ,F

s
Θn∗

)
(16)

Fs
Θn∗

: (x, zs
n∗) 7→ h . (17)

4.3. Evaluation Metrics

We report the results with standard metrics for evaluating im-
age quality: PSNR, SSIM [30] and the VGG, AlexNet and
SqueezeNet versions of LPIPS [31].

4.4. Implementation Details

We implement Gumbel-NeRF and Coded Switch-NeRF
with N = 4 experts based on the released code of Switch-
NeRF [17]. We modify CodeNeRF’s MLPs as the Gumbel-
NeRF’s expert architecture when comparing with CodeNeRF,
but use half of its channels per layer to keep the number of
parameters the same. When comparing with Coded Switch-
NeRF, the architecture of experts follows that of Switch-
NeRF. We use 256-dimensional instance-specific codes and
128/256-dimensional part-specific codes for CodeNeRF-style
and Switch-NeRF-style experts, respectively.

We follow the training and test-time optimization setups
of CodeNeRF [16], with carefully selected hyper-parameters
to provide a fair comparison. Specifically, we train the models
on 128 NVIDIA P100 GPUs with a total batch size of 327,680
points for 25k iterations using centered cropped images and
another 20k iterations using uncropped images. For test-time
optimization, we iteratively refine only the instance-specific
latent codes for 200 iterations.
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Fig. 4: Visualization of the decomposition provided by Coded Switch-NeRF (CSN) and Gumbel-NeRF (GN). Images in each
column are rendered from only the 3D points handled by the corresponding expert.

Table 1: Quantitative evaluation on ShapeNet-SRN cars test
set. Note that we clip the rendered values to 0-1.

Method # of
params PSNR↑ SSIM↑ LPIPS↓

VGG Alex Squeeze

CN 0.7M 19.66 0.882 0.150 0.161 0.119
GN-C 0.8M 21.51 0.892 0.119 0.138 0.104

CSN 4.1M 19.50 0.864 0.145 0.160 0.110
GN-S 3.9M 21.43 0.890 0.114 0.126 0.088

During training, the learning rate starts with an initial
value of 1.3× 10−3 and exponentially decays with a decay
factor of 0.1 for cropped images, then remains constant for
uncropped images. During test-time optimization, the same
exponential decay scheduler is used, but with an initial learn-
ing rate of 2.0×10−2. The models are trained with AdamW
optimizer. The parameters of cosine annealing of Gumbel-
NeRF are set as τmax = 10,τmin = 0.5, and Tmax = 20% for
training, and as constant τmin for test-time optimization.

5. RESULTS

5.1. Reconstruction of Unseen Objects

We perform an evaluation on the test set of ShapeNet-SRN
cars, following the evaluation protocol of SRN [14] and Co-
deNeRF [16], which calculates the average values of each
metric using images except those used as test-time optimiza-
tion inputs. We conducted one-shot optimization by using
only one input image from the same viewpoints across in-
stances. We show the quantitative and qualitative results
of CodeNeRF (CN) [16], Coded Switch-NeRF (CSN), and
Gumbel-NeRF (GS-C and GS-S, where “-C” and “-S” refers
to CodeNeRF-style and Switch-NeRF-style expert architec-
ture, respectively) in Table 1 and Fig. 3. As can be seen, with
a similar number of parameters, Gumbel-NeRF outperforms

Code-NeRF in all metrics. Our proposed method also outper-
forms Coded Switch-NeRF, showing the effectiveness of our
gate-free density-based expert selection design despite the
trade-off in processing time. We can visually inspect that our
model has no artifacts in the experts’ boundary, while Coded
Switch-NeRF has an unnatural discontinuity in shape.

5.2. Part Decomposition

We visualize the decomposition of objects in Fig. 4 using im-
ages rendered from the 3D points handled by each expert.
As can be seen, Gumbel-NeRF is capable of learning a more
consistent decomposition across objects compared to Coded
Switch-NeRF. For example, expert 4 of our Gumbel-NeRF
generates 4 wheels for the left and right instances, while ex-
pert 4 of Coded Switch-NeRF generates almost nothing for
the left instance and generates some lower components for
the right instance. The inconsistent decomposition by Coded
Switch-NeRF is due to the expert selection mechanism, in
which the expert selection is done before “seeing” the expert’s
quality. Furthermore, Gumbel-NeRF demonstrates a better
ability to prevent the router collapse problem, as it evenly uti-
lizes all the experts in the training phase.

6. CONCLUSION

We proposed Gumbel-NeRF, a conditional neural radiance
field capable of constructing the 3D representations of un-
seen car instances from one/few 2D observations. Our pro-
posed method leverages the hindsight expert selection mech-
anism, which guarantees the continuous transition in the pre-
dicted density field, successfully increasing the expressibility
of latent code-based NeRF. We also propose a novel rival-
to-expert training strategy in order to balance the utilization
of experts. Through experiments on the ShapeNet-SRN cars
dataset, we demonstrate that our method outperforms CodeN-
eRF and Coded Switch-NeRF in terms of several image qual-
ity metrics, proving its superior adaptability in capturing the
details of unseen instances.
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