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1.  Introduction
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Robustifying Routers Against Input Perturbations 
for Sparse Mixture-of-Experts Vision Transformers

• We demonstrate that PRC yields more consistent expert selections 
under input data augmentation.

Contributions

MoE is a neural network that includes experts specialized in certain 
inputs and a router that selects an expert or a few experts.

Background: Sparse Mixture-of-Experts (MoE)

Issue of Sparse MoE
MoE’s output may change discontinuously due to input perturbations, 
making the network output very unstable.

• To address this issue, we propose Pairwise Router Consistency (PRC) 
for regularizing the router so that its output becomes robust under 
input data augmentation.

Model
Design

[C. Riquelme+, NeurIPS2021]

Pairwise Router Consistency (PRC)

• PRC regularization loss is designed to penalize a router that is sensitive to data augmentation, biased 
toward particular experts, or ambiguous in expert selection.

• We add the following PRC regularization loss term for each of the routers in an MoE.

• Sparse MoEs trained with PRC achieve higher image classification 
accuracies on ImageNet-1K and CIFAR-10/100 datasets.

• MLPs in the ViT transformer blocks are replaced with MoE blocks. 
• Expert selection is performed for each patch token.

• Router has learnable parameters with softmax output.
• Top-k of the router output is/are multiplied to corresponding expert 

output.

Issue of V-MoE
Network output may change discontinuously due to input perturbations.

Implementation to V-MoE
When geometrical deformation is adopted in data 
augmentation, an extra processing is required to 
identify image patches between two data-
augmented samples.

Routers penalized by the PRC:

3. Ambiguous in expert selection

1. Sensitive to data augmentation

2. Biased toward particular experts within a 
dataset

𝐿𝜃
PRC = ∥ 𝑆𝜃 − 𝐼 ∥2

2, 𝑆𝜃  = 𝐶 ∑𝑥∈𝑋 𝑟𝜃 𝑥 1 𝑟𝜃 𝑥(2) 𝑇

Definition:
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3.  Proposed Method

2.  Vision Mixture of Experts (V-MoE)

PRC
• Robust to data augmentation.
• Different experts are equally utilized.
• Returns an output close to one-hot.

𝑆𝜃 𝑆𝜃

Table. Image classification accuracy. k is the # of experts selected.
Quantitative Result
• PRC empirically improves classification accuracy 

on ImageNet-1K, CIFAR-10/100 datasets, 
compared to the baseline method.

• Surprisingly, PRC with k=1 outperforms non-PRC 
with k=2. (k is the # of experts selected.)

k ImageNet-1K CIFAR-10 CIFAR-100 Flowers

V-MoE-S 2 75.84% 95.20% 81.38% 89.30%

V-MoE-S w/ PRC 2 76.27% 95.36% 82.27% 90.18%

V-MoE-S 1 75.23% 94.81% 81.18% 90.21%

V-MoE-S w/ PRC 1 75.92% 95.12% 82.12% 91.24%

Top-1 Top-2 Top-2 (order-agnostic)

V-MoE-S 63.04% 34.77% 45.44%

V-MoE-S w/ PRC 75.78% 48.54% 58.96%

Table. Rate of the # of expert blocks with consistent expert 
selection under data augmentation.

Figure. Router output when Gaussian noise is added to an image. 
Routing changes are shown in red.

Analysis of Router Output

• With PRC, the argmax of the router's output is better 
preserved under input data augmentation.

• Visualization of the router's output also indicates that 
expert selection frequently changes without PRC 
even for a relatively simple natural image.

4.  Evaluation


	スライド 1

