

Ego-Trajectory Augmentation on Bird's-Eye View Representation Space for Improving Vehicle Planner

Qiaoyi Deng¹, Yusuke Sekikawa², Satoshi Ikehata^{2,3}, Kenta Hoshino^{1,2}, Ikuro Sato^{1,2}

¹Institute of Science Tokyo, ²Denso IT Laboratory, Inc., ³National Institute of Informatics

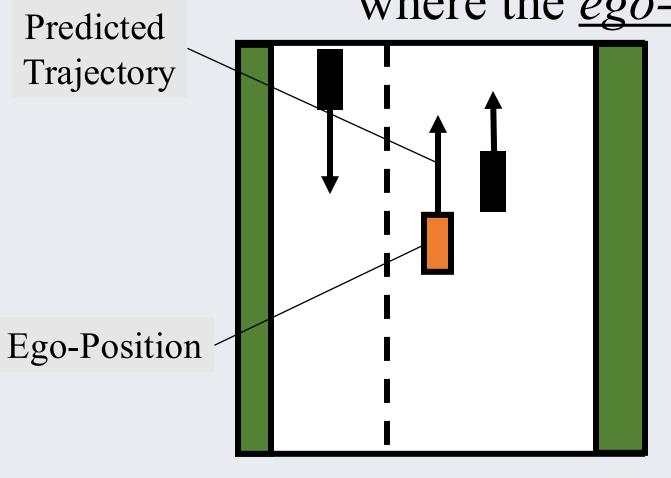
Decoders

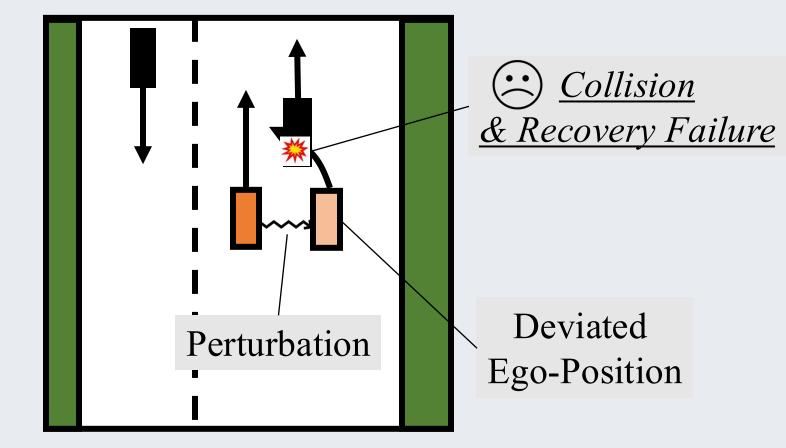
1. Introduction

Background End-to-end autonomous driving (E2EAD) models are gaining promising performance in real-world

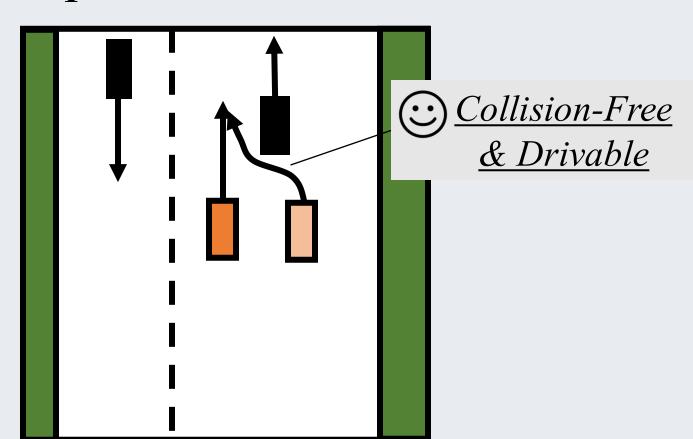
environments.

Current E2EAD models are vulnerable to situations Challenge where the *ego-vehicle* is laterally deviated.





• Potential Risks: *collision* and *recovery failure* Goal To train the model how to recover from the deviated lateral position without collision in a drivable manner.

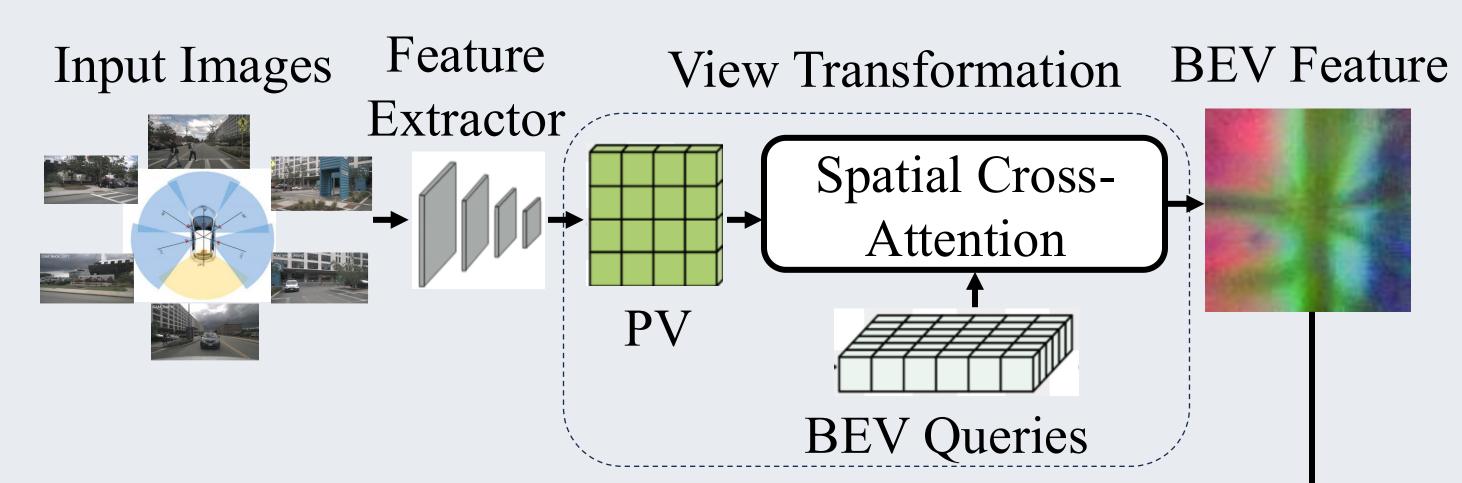


2. Related Work: **BEV-Based E2EAD Models**

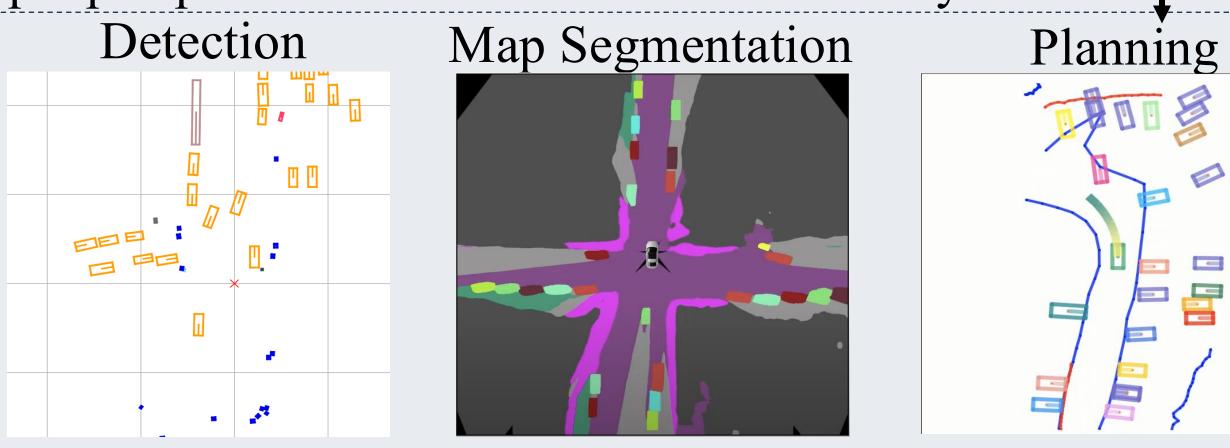
Representative Models

UniAD [Y. Hu, et al., CVPR 2023.] GenAD [W. Zheng, et al., ECCV 2024.] **VAD** [J. Bo, et al., ICCV 2023.] **SSR** [P. Li, et al., ICLR 2025.]

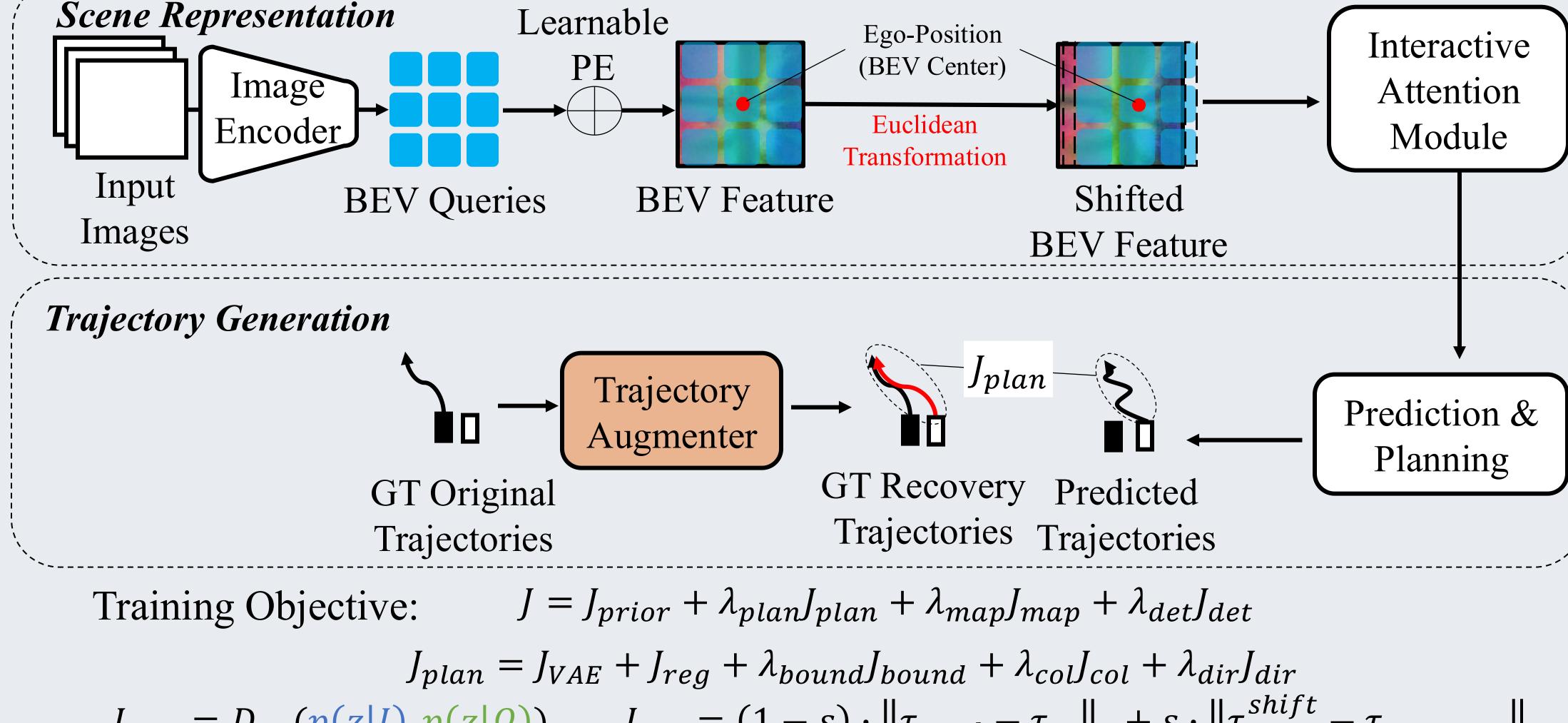
General Framework



Models learn from multi-camera information to integrate multiple perspective views into a unified bird's eye view.



3. Proposed Method



 $J_{VAE} = D_{KL}(p(z|I), p(z|\Omega)) \qquad J_{reg} = (1 - s) \cdot \|\tau_{pred} - \tau_{gt}\|_{1} + s \cdot \|\tau_{pred}^{shift} - \tau_{recovery}\|_{1}$

Featue-conditioned GT Trajectory-conditioned Gaussian posterior in latent space Gaussian prior in latent space

z: Latent vector sampled from distribution representing current trajectory state *I*: BEV feature

 ϵ : lateral shift probability Ω : Ground Truth ego-trajectory

 $s \sim Bernoulli(\epsilon)$

Trajectory Augmenter (a) Producing Recovery Trajectories from the Deviated Ego-Position GT Original Trajectory Recovery Trajectory Pure Pursuit with Ackerman Kinematic Model [B. Paden, et al. IEEE T-IV, 2016.] (b) Collision Detection t=6 Object Occupancy Occupancy Overlap Detection (Logical AND Operation) Ego Occupancy

4. Evaluation on the nuScenes dataset [H. Caesar, et al. CVPR, 2020.]

Ours planner outperforms the baseline (GenAD) by 0.4m for L2, 0.2% for CR

Method	L2 (m)↓				Collision Rate (%)↓			
	1s	2s	3s	Avg.	1s	2s	3s	Avg.
GenAD	0.36	0.83	1.55	0.91	0.06	0.23	1.00	0.43
Ours (ϵ =1.0)	0.27	0.48	0.79	0.54	0.40	0.55	0.70	0.55
Ours $(\epsilon=0.5)$	0.26	0.48	0.79	0.51	0.09	0.19	0.40	0.23

GenAD exhibits abnormal ego-trajectory generation, while Ours demonstrates naturally smooth ego-trajectory generation

